\qquad

You have 20 minutes to complete this quiz. No calculator, cheat sheet or aid of any kind is allowed.

1. [5pts] Set-up (but do not evaluate) the following integral

$$
\iint_{R} \frac{1}{2 \sqrt{1-x^{2}}} \mathrm{~d} A
$$

Where R is the region above the x -axis and inside the circle of radius 1 centered at 0 . You may use either polar or cartesian coordinates.

Solution: If we set this integral up using cartesian coordinates, the integral is actually easy to compute.

$$
\iint_{R} \frac{1}{2 \sqrt{1-x^{2}}} \mathrm{~d} A=\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} \frac{1}{2 \sqrt{1-x^{2}}} \mathrm{~d} y \mathrm{~d} x=1
$$

We can also convert to polar coordinates, where the integral is not so easy

$$
\begin{aligned}
\iint_{R} \frac{1}{2 \sqrt{1-x^{2}}} \mathrm{~d} A & =\int_{0}^{\pi} \int_{0}^{1} \frac{1}{2 \sqrt{1-r^{2} \cos ^{2}(\theta)}} r \mathrm{~d} r \mathrm{~d} \theta \\
& =\int_{0}^{\pi / 2} \int_{0}^{1} \frac{1}{\sin \theta} \mathrm{~d} r \mathrm{~d} \theta \\
& =\int_{0}^{\pi / 2} \frac{1}{\sin \theta} \mathrm{~d} \theta
\end{aligned}
$$

In fact, the calculation in cartesian coordinates gives the following integral

$$
\int_{0}^{\pi / 2} \frac{1}{\sin \theta} \mathrm{~d} \theta=1
$$

2. [5pts] Evaluate the following integral

$$
\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} e^{x^{2}+y^{2}} \mathrm{~d} y \mathrm{~d} x
$$

by changing to polar coordinates. (Hint: first determine the region of integration).
Solution: The region is just the semi-circle of raduis 1 in the upper-half plane in polar coordinates, this becomes

$$
\begin{aligned}
\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} e^{x^{2}+y^{2}} \mathrm{~d} y \mathrm{~d} x & =\int_{0}^{\pi} \int_{0}^{1} e^{r^{2}} r \mathrm{~d} r \mathrm{~d} \theta \\
& =\left.\frac{\pi}{2} e^{r^{2}}\right|_{0} ^{1}=\frac{\pi}{2}(e-1)
\end{aligned}
$$

