You have 15 minutes to complete this quiz. No calculator, cheat sheet or aid of any kind is allowed.

1. [5pts] Let D be the solid region inside the cylinder $r=2 \cos \theta$ between the planes $z=1$ and $2 x-y+z=10$. Write the volume of D as an iterated triple integral in cylindrical coordinates. Do not evaluate. (Hint: Be careful with the range of θ).

Solution: The region D is described by

$$
-\pi / 2 \leq \theta \leq \pi / 2, \quad 0 \leq r \leq 2 \cos \theta, \quad 1 \leq z \leq 10-2 r \cos \theta+r \sin \theta .
$$

The fact that θ must be between $-\pi / 2$ and $\pi / 2$ is due to the fact that $r=2 \cos \theta$ must be non-negative. The volume in cylindrical coordinates is then given by

$$
\iiint_{D} 1 \mathrm{~d} V=\int_{-\pi / 2}^{\pi / 2} \int_{0}^{2 \cos \theta} \int_{1}^{10-2 r \cos \theta+r \sin \theta} r \mathrm{~d} z \mathrm{~d} r \mathrm{~d} \theta
$$

2. [5pts] Let D be the solid region outside of $x^{2}+y^{2}+z^{2}=1$, above $z=\sqrt{x^{2}+y^{2}}$ and below $z=4$. Write

$$
\iiint_{D} x \mathrm{~d} V
$$

as an iterated triple integral in spherical coordinates. Do not evaluate.(Hint: A cone is given in spherical coordinates by $\phi=\phi_{0}$, what is ϕ_{0} ? What is the equation for the plane $z=4$ in spherical coordinates?)

Solution: In spherical coordinates the cone is given by $\phi=\phi_{0}$, where ϕ_{0} satisfies $\tan \phi_{0}=$ $r / z=1$. Therefore $\phi_{0}=\pi / 4$. Also the sphere is given by $\rho=1$ in spherical coordinates, while the plane $z=4$ is given by

$$
\rho=4 \sec \phi
$$

The region is then described by

$$
0 \leq \theta \leq 2 \pi, \quad 0 \leq \phi \leq \pi / 4, \quad 0 \leq \rho \leq 4 \sec \phi .
$$

The integral then becomes

$$
\iiint_{D} x \mathrm{~d} V=\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{4 \sec \phi} \rho^{3}(\sin \phi)^{2} \cos \theta \mathrm{~d} \rho \mathrm{~d} \phi \mathrm{~d} \theta .
$$

