1. (a) $[8 \mathrm{pts}]$ Consider the vector field $\mathbf{F}=\left(2 x y+z^{2}\right) \mathbf{i}+x^{2} \mathbf{j}+(2 x z+z) \mathbf{k}$. Show that \mathbf{F} is conservative and find the potential function $f(x, y, z)$.

Solution: To show that \mathbf{F} is conservative we write $\mathbf{F}=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}$ and check

$$
\frac{\partial M}{\partial y}=2 x=\frac{\partial N}{\partial x}, \quad \frac{\partial M}{\partial z}=2 z=\frac{\partial P}{\partial x}, \quad \frac{\partial N}{\partial z}=0=\frac{\partial P}{\partial y} .
$$

It follows that \mathbf{F} is conservative since $\nabla \times \mathbf{F}=\mathbf{0}$ on the whole space. To find the potential function, we need to find an $f(x, y, z)$ that satisfies

$$
f_{x}=2 x y+z^{2}, \quad f_{y}=x^{2}, \quad f_{z}=2 x z+z
$$

To find such an f we integrate both sides of the first equation with respect to x giving,

$$
f(x, y, z)=x^{2} y+x z^{2}+h(y, z)
$$

where $h(y, z)$ is some function depending on (y, x) only. Substituting this into the second equation for f gives

$$
x^{2}+h_{y}=x^{2} \quad \Rightarrow \quad h_{y}=0
$$

Therefore $h(y, z)=h(z)$ (h only depends on z). Finally substituting this into the third equation for f gives

$$
2 x z+h_{z}=2 x z+z \quad \Rightarrow \quad h_{z}=z \quad \Rightarrow \quad h=\frac{1}{2} z^{2}+c
$$

where c is any constant. It follows that

$$
f(x, y, z)=x^{2} y+x z^{2}+\frac{1}{2} z^{2}+c .
$$

(b) [2pts] Using the same \mathbf{F} as in part (a), evaluate the line integral

$$
\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}
$$

where C is the positively oriented closed curve $x^{2}+y^{2}=1$. (Hint: Use the fact that \mathbf{F} is conservative).

Solution: Since the vector field is conservative and the line integral is around a closed contour C, we can apply the fundamental theorem of line integrals to conclude that

$$
\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=0 .
$$

