\qquad
Quiz 9

This take-home quiz is to be done with out any assistance or collaboration of any kind. The assignment is due in class on Tuesday $11 / 28$.

1. [4pts] Let C be a triangle with vertices given by $(0,0),(2,4),(2,6)$ oriented in the counter-clockwise direction. Use Green's Theorem to compute the line integral

$$
\int_{C} x^{2} \mathrm{~d} x+x \mathrm{~d} y .
$$

Solution: Applying Green's Theorem gives

$$
\int_{C} x^{2} \mathrm{~d} x+x \mathrm{~d} y=\iint_{R} 1 \mathrm{~d} A
$$

where R is the region inside the triangle. The area of this triangle is given by $\frac{1}{2} b h=$ $\frac{1}{2}(2)(2)=2$. Therefore

$$
\int_{C} x^{2} \mathrm{~d} x+x \mathrm{~d} y=2
$$

2. [3pts] Let $f(x, y)$ be a smooth function, $\mathbf{F}(x, y)=M(x, y) \mathbf{i}+N(x, y) \mathbf{j}$ be a smooth vector field and R be a simple region in the x, y plane bounded by the closed curve C oriented in the positive (counter-clockwise) direction with outward facing unit normal $\mathbf{n}_{C}(x, y)$. Use Green's Theorem to show the following generalized integration by parts formula

$$
\iint_{R} \nabla f \cdot \mathbf{F} \mathrm{~d} A=-\iint_{R} f \nabla \cdot \mathbf{F} \mathrm{~d} A+\int_{C} f \mathbf{F} \cdot \mathbf{n}_{C} \mathrm{~d} s
$$

Hint: Show that

$$
\int_{C} f \mathbf{F} \cdot \mathbf{n}_{C} \mathrm{~d} s=\int_{C}-f N \mathrm{~d} x+f M \mathrm{~d} y
$$

and apply Green's Theorem to the line integral on the right-hand side.

Solution: Let $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}$ be a parameterization of C with $a \leq t \leq b$. The outward facing normal \mathbf{n}_{C} can be parameterized by

$$
\mathbf{n}_{C}=y^{\prime}(t) \mathbf{i}-x^{\prime}(t) \mathbf{j}
$$

Therefore the line integral is given by

$$
\begin{aligned}
\int_{C} f \mathbf{F} \cdot \mathbf{n}_{C} \mathrm{~d} s & =\int_{a}^{b} f(x(t), y(t)) M(x(t), y(t)) y^{\prime}(t)-f(x(t), y(t)) N(x(t), y(t)) x^{\prime}(t) \mathrm{d} t \\
& =\int_{C}-f N \mathrm{~d} x+f M \mathrm{~d} y
\end{aligned}
$$

We now apply Green's theorem to this line integral to obtain

$$
\begin{aligned}
\int_{C} f \mathbf{F} \cdot \mathbf{n}_{C} \mathrm{~d} s & =\int_{C}-f N \mathrm{~d} x+f M \mathrm{~d} y \\
& =\iint_{R} \frac{\partial}{\partial y}(f M)+\frac{\partial}{\partial x}(f N) \mathrm{d} A \\
& =\iint_{R} f_{y} N+f N_{y}+f_{x} M+f M_{x} \mathrm{~d} A \\
& =\iint_{R} f\left(M_{x}+N_{y}\right) \mathrm{d} A+\iint_{R} f_{x} M+f_{y} N \mathrm{~d} A \\
& =\iint_{R} f \nabla \cdot \mathbf{F} \mathrm{~d} A+\iint_{R} \nabla f \cdot \mathbf{F} \mathrm{~d} A
\end{aligned}
$$

We have therefore derived the desired formula.
3. [3pts] Let $\mathbf{G}(x, y)=P(x, y) \mathbf{k}$ and $\mathbf{F}(x, y)=M(x, y) \mathbf{i}+N(x, y) \mathbf{j}$ be smooth vector fields and let R be a simple region in the x, y plane bounded by the closed curve C oriented in the positive (counter-clockwise) direction. Denote the unit normal to R induced by the orientation of C by $\mathbf{n}_{R}=\mathbf{k}$. Use Green's Theorem to show another generalized integration by parts formula

$$
\iint_{R} \mathbf{G} \cdot(\nabla \times \mathbf{F}) \mathrm{d} A=\iint_{R}(\nabla \times \mathbf{G}) \cdot \mathbf{F} \mathrm{d} A+\int_{C}\left(\mathbf{G} \cdot \mathbf{n}_{R}\right) \mathbf{F} \cdot \mathrm{d} \mathbf{r}
$$

Hint: Show that

$$
\int_{C}\left(\mathbf{G} \cdot \mathbf{n}_{R}\right) \mathbf{F} \cdot \mathrm{d} \mathbf{r}=\int_{C} P M \mathrm{~d} x+P N \mathrm{~d} y
$$

and apply Green's Theorem to the line integral on the right-hand side. Write out $\nabla \times \mathbf{G}$ and $\nabla \times \mathbf{F}$ explicitly clarify the expresions involving the curl.

Solution: Since $\mathbf{n}_{R}=\mathbf{k}$ we see that

$$
\left(\mathbf{G} \cdot \mathbf{n}_{R}\right) \mathbf{F}=P \mathbf{F}=P M \mathbf{i}+P N \mathbf{j} .
$$

Therefore we may apply Green's theorem to the line integral

$$
\begin{aligned}
\int_{C}\left(\mathbf{G} \cdot \mathbf{n}_{R}\right) \mathbf{F} \cdot \mathrm{d} \mathbf{r} & =\int_{C} P M \mathrm{~d} x+P N \mathrm{~d} y \\
& =\iint_{R} \frac{\partial}{\partial x}(P N)-\frac{\partial}{\partial y}(P M) \mathrm{d} A \\
& =\iint_{R}\left(P_{x} N-P_{y} M\right) \mathrm{d} A+\iint_{R} P\left(N_{x}-M_{y}\right) \mathrm{d} A .
\end{aligned}
$$

Since

$$
\nabla \times \mathbf{G}=P_{y} \mathbf{i}-P_{x} \mathbf{j}
$$

and

$$
\nabla \times \mathbf{F}=\left(N_{x}-M_{y}\right) \mathbf{k}
$$

we can write

$$
\iint_{R}\left(P_{x} N-P_{y} M\right) \mathrm{d} A=-\iint_{R}(\nabla \times \mathbf{G}) \cdot \mathbf{F} \mathrm{d} A
$$

and

$$
\iint_{R} P\left(N_{x}-M_{y}\right) \mathrm{d} A=\iint_{R} \mathbf{G} \cdot(\nabla \times \mathbf{F}) \mathrm{d} A
$$

Putting everything together gives

$$
\int_{C}\left(\mathbf{G} \cdot \mathbf{n}_{R}\right) \mathbf{F} \cdot \mathrm{d} \mathbf{r}=-\iint_{R}(\nabla \times \mathbf{G}) \cdot \mathbf{F} \mathrm{d} A+\iint_{R} \mathbf{G} \cdot(\nabla \times \mathbf{F}) \mathrm{d} A,
$$

which is the equation to be proved.

