Homework
Homework assignments will be listed below:
- Homework 1: Textbook Exercises 4.1.3, 4.1.5, 4.1.9, 4.2.1, 4.2.3, 4.2.5, 4.2.10, 4.2.11, *4.2.14
*Required for Math 6080 students, optional extra credit for Math 3080 students
Due: Mon 2/05 by 6pm CT
- Homework 2: Textbook Exercises 4.4.3, 4.3.2, 4.3.7*, 4.3.9, 5.2.1, 5.2.3, 5.2.10, 5.2.21, 5.2.30
*Required for Math 6080 students, optional extra credit for Math 3080 students
Due: Mon 2/19 by 6pm CT
- Homework 3: Textbook Exercises 5.3.1, 5.3.6, 5.3.7**, 5.3.8, 5.3.10, 5.3.13, 5.3.17 i), 5.3.20*, 5.3.23
*Required for Math 6080 students, optional extra credit for Math 3080 students
**Optional Extra Credit for all students
Due: Mon 2/26 by 6pm CT
(Hint to 5.3.7): The sum of $n$ independent geometric RVs $Y = X_1 + \ldots + X_n$ is a negative Binomial distribution with PMF
\[
P(Y=k) = { k-1 \choose n-1} p^k(1-p)^{k-n} \quad k = n,n+1,\ldots
\]
Show that
\[
E \left[\frac{n-1}{Y-1}\right] = p.
\]
- Homework 4: Textbook Exercises 6.1.3, 6.1.5, 6.1.8, 6.1.9, 6.2.1, 6.2.3*, 6.2.4, 6.2.6, 6.2.10
*Required for MATH 6080 students, optional extra credit for MATH 3080 students
Due Mon 3/11 by 6pm CT
- Homework 5: Textbook Exercises 6.3.2, 6.3.3*, 6.3.5, 6.4.2, 6.4.4, 6.4.6, 6.4.13, 6.4.15, 6.4.16
*Required for MATH 6080 students, optional extra credit for MATH 3080 students
Due Mon 3/18 by 6pm CT
- Homework 6: Textbook Exercises 7.2.1, 7.2.4*, 7.2.7, 7.2.10, 7.2.12, 7.2.13, 7.3.4, 7.3.7, 7.3.8
*Required for MATH 6080 students, optional extra credit for MATH 3080 students
Due Mon 4/08 by 6pm CT
- Homework 7: Textbook Exercises 10.2.1, 10.2.3, 10.2.4, 10.2.5, 10.2.6, 10.2.7*, 10.2.10, 10.3.2, 10.3.6
*Required for MATH 6080 students, optional extra credit for MATH 3080 students
Due Mon 4/29 by 6pm CT